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SUMMARY 

The theory of the use of the basic parameters of mathematical process models 
is discussed. In the calculations, it is assumed that the equilibrium is described by 
the law of mass action and the kinetics have a diffusional nature. Solutions of ion- 
exchange dynamics for film, particle and mixed diffusion in the case of linear and 
non-linear isotherms are given. As examples, theoretical curves and experimental 
results are compared graphically. 

INTRODUCTION 

Up to the present, an empirical approach has been mainly used to study the 
problem of the optimal conditions for ion-exchange processes. However, this ap- 
proach does not enable the true optimal conditions for ion-exchange processes to be 
found, as a consequence of the many independent parameters that define real systems. 
In the calculations, it is assumed that the equilibrium is described sufficiently accu- 
rately by the law of mass action and the kinetics have a diffusional nature, so that in 
the description of any ion-exchange system it is possible to use as initial data the ion- 
exchange capacity, selectivity coefficients, film diffusion and particle diffusion co- 
efficients. In this paper are discussed the principles and results of the creation of such 
models for single-component systems suitable for optimization purposes. It should be 
noted that the calculation of the sorption stage for some multicomponent systems 
may be reduced to the single-component dynamic problem (deionization until the 
break-through point of a component with the lowest selectivity coefficient, dynamics 
of ion-exchange of a micro-component with a macro-componenti). 

THEORETICAL 

Ion-exchange dynamics are described by a system of three equations for each 
component in a mixture: balance, kinetics and isotherm. For the purpose of solving 
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these equations simply, they are written in dimensionless variables below: 
balance equation : 

au av 
ax +aT= 

aw 
A-r 

kinetic equation : 

av 
- = F (U, v, V(S), UC,) ar 

isotherm equation : 

(2) 

(3) 

where 
u = c/co = 

V s alao = 

VW E a’“‘/a, = 

u,, s ccq/cg = 

co9 ao = 

x s f/r, = 
T = tJ1o = 

h9 to = 

a = 

W = 

A = D,/wf,-, = 
In the calculations, it is assumed that the equilibrium is described accurately 

by the law of mass action, which has the following form under the conditions of an 
absence of any additional chemical interaction : 

non-dimensional concentration of the exchanged ion in the 
liquid; 
non-dimensional concentration of the exchanged ion in the 
resin, mean amount within the volume of the resin particle; 
non-dimensional local concentration of the ion in the resin; 
non-dimensional concentration of the ion in the liquid, being 
in equilibrium with W) on the particle surface of the resin; 
characteristic concentrations of the exchanged ion in the liquid 
and in the resin, respectively; 
non-dimensional size; 
non-dimensional time; 
characteristic values of size and time, connected with the pe- 
culiarities of each concrete problem; 
longitudinal diffusion coefficient; 
flow-rate, calculated for the pure section of the column; 
non-dimensional longitudinal diffusion coefficient. 

where 
P = zjz, = ratio of ionic charges; 
K = non-dimensional selectivity coefficient. 
The ion-exchange kinetics are determined by the mass transport 

and in the resin. The film diffusion equation has the form 
in the liquid 

av 
- = u - u,, a2- (5) 

(4) 
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and the scale factors are 

The kinetic coefficient, p, for aqueous solutions and resins with spherical particles at 
20” can be calculated according to the equation (ref. 2, p. 68) 

p = 7.5. 10-4 (f + ?$-“’ w’J.47 (2R)‘.SJ 

where 
R = radius of the resin particles; 
A, A0 = equivalent conductivities of ions. 
It was shown (ref. 2, p. 84) that relative contributions of longitudinal diffusion 

and film diffusion to erosion of the front was determined by the factor A: 

When A >> 1, the contribution of longitudinal diffusion is the most important, 
but when d < 1, film diffusion predominates. It is further assumed that A < 1 for 
the most commonly used conditions in practical ion-exchange and DJ = 0 in eqn. 1. 

Diffusion in particles is determined by Fick’s laws, which have the following 
form for spherical particles: 

-g (9 VC“) = g- (,o V’S’) (7) 

where 
Q = r/R = non-dimensional variable radius in particle. In this case, character- 

istic scales of size and time are: 

(7a) 

where 
D1 = particle diffusion coefficient. 
The particle diffusion is described by an equation similar to eqn. 5 for the final 

stages of sorption at the time when the greatest volume of the particle is removed: 

aV --= 
aT 

V”’ - v 

The characteristicscales of size and time are: 

(84 
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where 
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y = constant. 
The true kinetic process is the mixed diffusion process, 

contributions of film and particle diffusion is determined by 

ff= p,“‘D’ 
0 I 

and correlation 
the factor H: 

of the 

(9) 

When H GC 1, the kinetics are defined by film diffusion and it is possible to assume 
that redistribution of the concentration occurs instantly in the particle, i.e., V(O) = I/. 

The solutions stated below were obtained within the limitations indicated. 

Linear isotherm 

V(S) = u (3’) 

(I) In the case of film diffusion (H = 0), tables of certain solutions3 were 
obtained for a wide range of values of A’ and T by means of a computer and the 
solutions of sorption and desorption problems for chromatographic variants were 
also found4. 

(2) In the case of particle diffusion (H = 00) (eqns. 1,3’ and 7), the particular 
solution’ was supplemented with an asymptotic equation (ref. 2, p. 38). For compari- 
son of the theory with experimental results, we investigated the sorption of copper(I1) 
ions by oxidized coal”. The theoretical curve and experimental points are plotted 
logarithmically in Fig. 1. 

The superposition of the. non-dimensional theoretical curve on the experi- 
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Fig. 1. Comparison of the theoretical curve and experimental results for the sorption of copper ions 
from a solution containing 5. IOV4 mg-equiv./ml of Cuz+ and 1.25 mg-equiv./ml of Na+(NaNOJ) by 
oxidized coal (IV = 0.08 cm/set; R = 0.02 cm; I = I1 cm; D, = 9.G*1O’g cm’/sec; au/co = 300; 
x = 0.99). 
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Fig. 2. Theoretical cucvcs in the range of mixed diffusion and linear isotherm; H = IO. 

mental results on a graph of log c/c,, versus log t gives the possibility of finding the 
characteristic scales of size and time by the intercept on the abscissa equal to log t/T. 
It is then possible to calculate the parameters aJc,-,, D, or p, knowing the conditions 
of th,e experiment (MP, R). 

(3) In the case of mixed diffusion (eqns. 1,3’, 5 and 7), the exact solution for 
the dynamic sorption problem was found by means of a computer’. As it was found 
that the influence of film diffusion prevails in the initial stages of sorption, whereas 
particle diffusion prevails-in the final stages, there must exist a stage of the process 
at which the rates of these two processes are equal and the duration of this stage de- 
pends on H and X. Graphs of U(X, T) for H = 10 are given in non-dimensional 
logarithmic co-ordinates in Fig. 2. The ranges described by film or particle diffusion 
to within 10% are shown by dotted lines. Fig. 3 gives a comparison of the theoretical 
curve and experimental results8. 

Non-linear isotherms 
(1) Film dt#hion. By means of a computer, the solution of the system, of eqns. 

1,4, 5 and 5a for U(X, T) was found9 for selectivity constants,R, changing over a wide 
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Fig. 3. Comparison of the theoretical curve and experimental results for the sorption of yttrium from 
a solution containing 0.1 mg-equiv./ml of Caz+ and JOBS mg-equiv./ml of Y3+ by oxidized coal in 
the Ca’+ form (pH = 3: w = 0.35 cm/set; R = 0.01 cm; I = 2.8cm; D, = 2.1-10-9cmf/sec: 
W = G8.5: a,,/~” = 500; X, = 5.76). 

Fig. 4. Comparison of the theoretical curve and experimental results for the sorption of calcium by 
cationite KU-2 (H+) (R = 2; w = 5.3 cm/set; R‘= 0.024 cm; I = 8 cm; B = 2.3 set”; X = 3.5). 
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range (from 0.1 to 00). As an example, the theoretical curve and the experimental 
results are given in Fig .4. 

(2) Particle d/@hion, described by eqns. I, 4, 8 and Sa. In this case, the solution 
can be expressed by the solution of the film diffusion problem by means of the follow- 
ing calculations, Let us designate the solution of the film diffusion problem (see sec- 
tion (I), above) with a selectivity coefficient EC and a ratio of charges ,uu, by 
L/(X, T, R,, pC) and V(X, T, K,, p,). Then, the solution for the sorption problem in 
the case of particle diffusion Ur’) and VC” with a selectivity coefficient R, and a ratio 
of charges ,ur is expressed by the equations 

I/“’ (X,, T,, Ri, /A,) = 1 - V (T,, X,, KY’+, --!-) 

(10) 

V”’ (Xi, T,, R,, ,u,) = I - U (T,, A’,, Rll’i, ‘) 
Pi 

By means of eqn. 10, it is possible to plot easily the solutions of the problems 
in section (1) in the case of particle diffusion. Fig. 5 shows a comparison of the theo- 
retical curve and experimental results. 
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Fig. 5. Comparison of the theoretical curve and experimental results for hydrogen in the regeneration 
of KU-2 (Na+) by 1 iVacid (W = 0.25 cm/set. R = 0.03 cm: I = 15.8-17.5 cm (H+ form): R = 0.8: 
a0 = 1.5 mg-equiv./ml: X = 5). 

(3) We found the approximate solution lo for the case of S-shaped isotherms, to 
which the ion-exchange dynamics may be reduced, for example, when complex for- 
mation occurs or in the case of resin mixtures. The isotherm is divided into two parts 
by drawing a tangent at the point (co, ao) (Fig. 6). The initial part is approximated by 
the isotherm in eqn. 4 with ,u = 1 and the selectivity coefficient 

K, = -$- ($),=, < 1 
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Fig. 6. Method of division of S-shaped isotherm into two parts (straight line 2 is parallel to tangent 1). 

The second convex part of the isotherm is also approximated by the isotherm in eqn. 
4 with ,u = 1 and the selectivity coefficient 

a2-a, 2 K2=(ao-a ) 2 

The method of finding a, is shown in Fig. 6. 
For the first part, the solution could be found from the equation 

C 
- = U(X, T,& 1) 
Cl 

and for the second part, it could be found from the equation 

c - c2 
-- = U(X, T,Rz, 1) 
co - c2 
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Fig. 7. Comparison of the theoretical curves and experimental results for the sorption of calcium 
from natural carbonated water by cationitc Kb4p-2 (1: w = 0.03 cm/set; I = 14.6cm: S = 2; 
x = 0.07. 2: IV = 0.04 cm/set; I = 29.2 cm; & = 2; X = 0.1). 
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wl~cre L/(X, T, R, 1) is tile solution for tile cases in section (1) or (2) depending on 
the kind of kinetics. Fig. 7 sl~ows a comparison of the data obtained by eqn. 11 and 
tile theoretical curves corresponding to them. 

The solutions given above are used for the calculation of tile sorption dynamics 
and tile regeneration dynamics of different true single-component and multicompo- 
nent systems. Tllese models are also the basis for tile calculation of tile optimal con- * 
ditions for ion-exchange processes. It is appropriate to mention llere that information 
on the systems studied (selectivity coefficients; coefficients of film diffusion and par- 
ticle diffusion) could be obtained for use in calculations in ion-exchange processes 
by superimposing tile theoretical curves and experimental results. 
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